The BIRQ user manual

Sergey Kalichev <serj.kalichev@gmail.com>

2017

Overview

BIRQ stands for Balance IRQs. This is software to balance interrupts be-
tween CPUs on Linux while high load. The birq project is written in C. It
has no external dependencies. The author of birq project is Sergey Kalichev
<serj.kalichev(at)gmail.com>. The project development is sponsored by “Factor-
TS” company http://www.factor-ts.ru/.

The IRQ balancing is important task for a systems with high loaded 1/0. The
balancer gathers the system statistics and then set the IRQ affinity to free
overloaded CPUs. The statistics can contain information about CPU utilization,
number of interrupts, system topology etc.

There are two well known balancer projects:

o irgbalance https://github.com/Irgbalance/irgbalance
e irqd https://github.com/vaesoo/irqd

The both projects have an advantages and disadvantages. I have used an
irgbalance for a long time. It’s good project but now the accumulated problems
make me to start new balancer project. I will consider some irqd and irgbalace
problems later but firstly I want to note several important problems with IRQ
balancing that can’t be solved now by any balancer including birq.

BIRQ project uses BSD license since birg-1.3.0 version. The earlier versions
contain some GPL code.

BIRQ related links

There are the BIRQ related links:

o GIT repository https://src.libcode.org/birg

o Downloads http://birq.libcode.org/files

o Issue tracker http://birq.libcode.org/issues/new

o BIRQ discussion mailing list http://groups.google.com/group/birq

http://www.factor-ts.ru/
https://github.com/Irqbalance/irqbalance
https://github.com/vaesoo/irqd
https://src.libcode.org/birq
http://birq.libcode.org/files
http://birq.libcode.org/issues/new
http://groups.google.com/group/birq

Useless statistics

The one of the most important problems for IRQ balancing is a useless kernel
statistics about CPU utilization by IRQs. The Linux kernel shows the following
information:

o Time that CPU spent in IRQ handlers and in softirg’s. See the /proc/stat.
This time is a total for all IRQs and softirg’s.
o Number of interrupts for each IRQ. See the /proc/stat or /proc/interrupts.

The most critical source of interrupts while IRQ balancing is a networking.
Earlier the network drivers were fully interrupt driven. The greater traffic leads
to greater number of interrupts from network card. In general the interfaces
with greater number of interrupts lead to greater load of CPU. But now this is
not a case.

Network drivers in modern Linux kernel use NAPI mechanism to increase
performance for high bandwidth. The driver can disable hardware interrupts
and schedule softirq to poll for new data later. The softirq will poll for the
new data, handle appropriate actions and then schedule softirq again. Note the
interrupts are still disabled. The only case driver enables interrupts is when all
the data were received and there is nothing to receive. Often NAPI leads to the
inverse logic for the number of interrupts and CPU load. The greater traffic
leads to the lesser number of interrupts. So the lesser number of interrupts in a
case of NAPI means greater CPU load. But if the traffic is not very high the
number of interrupts will be still large bacause the interrups is enabled almost
all the time (nothing to receive -> enable interrupts).

This is a mess. It’s no way to determine the CPU load originated by specified
IRQ using the number of interrupts for this IRQ. Moreover the scheduled softirq’s
don’t have any association with original IRQ. Because of softirq polling the
number of interrupts is useless information to determine CPU load originated by
TRQ. So the balancer know nothing about IRQ weight while choosing the IRQ
to move away from overloaded CPU.

IRQ sticking

The next unsolved problem for IRQ balancing is IRQ sticking. When CPU has
a really high load the polling mechanism is always on and there is no interrupts
at all. The balancer can change the IRQ affinity but can’t change CPU for
scheduled softirq. So the polling can be executed on the current CPU indefinitely
until driver receives all the data and enables interrupts.

For balancer it means the wrong statistics about CPU load and TRQ affinity.
The balancer supposes the IRQ has a new affinity but actually softirq use old
CPU. The old CPU has a high load but new CPU has no additional load at all.

The deceived balancer will move IRQs away from old CPU again and again. But
nothing happens. Sometimes the experiments can show the empty (no IRQs)
CPU with 100% load. After a while (can be a minutes) the IRQs will be really
moved to another CPU. The old CPU load will become 0% but some another
CPU load probably will become 100% because balancer moves IRQs to minimally
loaded CPU. Often the minimally loaded CPU is the same for the series of CPU
movements because moving of sticking IRQs has no effect on target CPU load.
The CPU with 100% load has a great chance to make its IRQs sticking. The
situation will repeat again and again.

It’s no way to formally determine ITRQ sticking. And I don’t know the way to
unstick TRQs. It’s a problem of network interface driver and a kernel.

Initial IRQ allocation

The Linux kernel has a problem with initial IRQ allocation. While system
initialization Linux puts IRQs to first CPU. CPU has 256 slots for IRQ handling.
Some of this slots are used by service IRQs. So when the all the slots are busy
Linux will use second CPU. And so on. If CPU IRQ table is full then you can’t
move another IRQ to this CPU (there is no free slot for it). The second problem
is the IRQ affinity settings will be applied when the IRQ really arrived. Before
this moment the IRQ is located within old CPU table and is not removed from
it. In the same time it will reserve a slot within new CPU table. So the moving
of the inactive IRQs can pollute the CPU’s tables.

So the birq tries to minimize the IRQ moving. The birq (since birq-1.2.0) doesn’t
change initial affinity for all IRQs on start (The old birq did it). It gets the
current TRQ affinity. It can change the IRQ affinity if CPU is overloaded and if
TIRQ has at least one interrupt while current interval (iteration period). Le. it
allows to move only active IRQs.

In our test we had a CPUs with busy IRQ tables. The most IRQs were passive
and CPU was idle but we can’t move active IRQs to this idle CPU bacause its
TRQ slots were busy. This is the serious Linux kernel problem for big platforms
with a large amount of LAN interfaces. Note each interface has a several queues.
Each queue has its own IRQ.

Another problems and peculiarities

I’ll try to show some balancing problems by example of existent balancers.

The irqd project uses Receive Packet Steering (RPS) to balance CPU load. In a
several words RPS is a mechanism to share network packet processing between
several CPUs. The RPS share the stream originated from one source. The

source is a network interface or network receive queue. The whole stream will
be processed on the single CPU without RPS. Search for RPS details in the
Internet or Linux kernel documentation. The first problem with RPS - the RPS
is network specific. Actually it’s not a serious problem I think. The second
problem is the RPS is good for one large stream but not good for many smaller
streams. So it can’t be universal. The experiments show the server can receive
more network packets from one large stream using RPS but the load of CPUs
is very high for total amount of received data. And the third problem is the
name of network receive queues is not standardized. So the irqd have to parse
/proc/interrupts for the IRQ source names and use fuzzy logic to find out the
corresponding RPS-controlling filesystem entries. Each network driver uses its
own naming scheme.

The irgbalance rely on interrupt statistics, suppose the IRQs with greater number
of interrupts produce greater CPU load. Then it calculates IRQ weights to set
more optimal affinities. Unfortunately it not works due to NAPI. The weights
are wrong for a high loaded system. The irgbalance is too intellectual for current
kernel statistics state.

The irgbalance classifies IRQs (devices) and use different balance level for different
device classes. As a result some devices have affinity to several CPUs at the
same time. It’s not good because most of interrupt controllers actually use a
single CPU anyway. It leads to wrong weight calculations.

Hyper Threading

The early birq releases suppose that HT is useless feature for IRQ balancing
and so the best behaviour is to use only first thread of HT for IRQs. But the
real tests show the using of both HT threads speeds up an IRQ processing. For
our tests we have used platforms with a big amount of LAN interfaces and our
system was highly loaded. When I have disabled a HT (use the first HT thread
of CPU and don’t use second HT thread of this CPU) then the summary speed
was slower. And we didn’t see any examples when the system with HT is slower
than system without HT using. The HT is recommended to use.

Note current birq with disabled HT will get current affinities. The current affinity
mostly use HT. Birq will not change this affinity unless the correspondent CPU
is overloaded and TRQ is active. So people think the disabling of HT is not
working. Really it works. It will move IRQ to the first HT thread only. But
second threads already have IRQs on birq start.

Some BIRQ features

The birq gathers statistics of CPU utilization and choose the most overloaded
one. Then it choose the IRQ to move away from overloaded CPU. The balancer
can use three different strategies to choose IRQ. The strategies are:

¢ Choose the TRQ with maximum number of interrupts.
e Choose the IRQ with minimum number of interrupts.
e Random choose.

The experiments show the most effective strategy is random choose. Now it’s
default. The user can choose strategy using command line arguments for birq
executable. In a case of minimal/maximal choose the problem is with periodic
processes. The more intellectual TRQ placing is useless due to useless kernel
statistics.

The birq doesn’t use device classification. All TRQs are equals.

Actually the birq balancing is not perfect. But I think the perfect balancing is
not possible because of useless kernel statistics and TRQ sticking.

Usage

The current version of birq is 1.4.0.
$ birq [options]
Options :

e -h, —help - Print help.
¢ -d, —debug - Debug mode. Don’t daemonize.
e« -v, —verbose - Be verbose.

e -¢c <PATH>, —conf=<PATH> - Config file. Default is /etc/birq/birq.conf.

Implemented since birg-1.4.0.

¢ -x <PATH>, -pxm=<PATH> - Specify proximity config file. Imple-
mented since birg-1.1.0.

e -p <path>, —pid=<path> - File to save daemon’s PID to.

e -0 <facility>, —facility=<facility> - Syslog facility. Default is DAE-
MON.

The following options are legacy. Use config file instead command line options:

e -r, —ht - Enable Hyper Threading support. The second threads will be
considered as a real CPU. Not recommended.

¢ -t <float>, —threshold=<float> - Threshold to consider CPU is over-
loaded, in percents. Float value. Default threshold is 99%.

¢ -1 <float>, —load-limit=<float> - Don’t move IRQs to CPUs loaded
more than this limit, in percents. Default limit is 95%.

e -i <sec>, —short-interval=<sec> - Short iteration interval in seconds.
It will be used when the overloaded CPU is found. Default is 2 seconds.

e -I <sec>, —long-interval=<sec> - Long iteration interval in seconds.
It will be used when there is no overloaded CPUs. Default is 5 seconds.

e -s <strategy>, —strategy=<strategy> - Strategy for choosing IRQ
to move. The possible values are “min”, “max”, “rnd”. The default is
“rnd”. Note the birg-1.0.0 uses -c, —choose option name for the same
functionality.

Configuration file

The default location of config file is /etc/birq/birq.conf. But you can specify
another location by ‘-c¢’ birq command line option.

The config file can be re-read by sending SIGHUP signal to birq daemon.
Options:

e threshold=<float> - Threshold to consider CPU is overloaded, in per-
cents. Float value. Default threshold is 99%.

¢ load-limit=<float> - Don’t move IRQs to CPUs loaded more than this
limit, in percents. Default limit is 95%.

¢ short-interval=<sec> - Short iteration interval in seconds. It will be
used when the overloaded CPU is found. Default is 2 seconds.

e long-interval=<sec> - Long iteration interval in seconds. It will be
used when there is no overloaded CPUs. Default is 5 seconds.

o strategy=<strategy> - Strategy for choosing IRQ to move. The possi-
ble values are “min”, “max”, “rnd”. The default is “rnd”.

¢ exclude-cpus=<cpumap> - It allows to exclude some CPUs from the
list of CPUs that process IRQs. The ‘cpumap’ is bit-mask in hex format
like in /proc/irq/*/smp_ affinity files.

Proximity

The NUMA node proximity is very important characteristic for IRQ balancing.
Often the PCI buses have different distance to the CPUs from different NUMA
nodes. You can see the block schemes of large servers motherboards - the PCI
bridges are connected to specific NUMA node (CPU package). So the path from
PCI device to non-local CPU (CPU from another NUMA node) is not direct.
The TRQ handling on non-local CPUs decreases performance. For example the
network IRQ handling on non-local CPU can half the performance and traffic
bandwidth.

The most hardware platforms have an information about PCI devices proximity.
The balancer can get this information from sysfs. But some platforms have
broken proximity information or don’t have it at all. In this case the local NUMA
node is set to -1 and the local CPU mask includes all the system CPUs. It’s
sub-optimal.

The birq allows to set proximity manually to repair system settings. Use “-x”
or “—pxm” command line option to specify proximity config file. The proximity
config file looks like this:

0000: node 1
0000:08:00.0 node 0
0000:00:1c.6 cpumask ff
it's comment

empty strings are ignored

The first field is a PCI address. You can find out the PCI addresses using

following command:

$ 1lspci -D

Formally the PCI address contain the following parts with “:” delimiter.
<Domain>:<Bus>:<Device>.<Func>

e Domain - 4 characters. Example “0000”
e Bus - 2 characters. Example “08”

e Device - 2 characters. Example “1¢”

e Func - 1 character. Example “6”. Note the delimiter between and is “”

The proximity config file can contain incomplete PCI address. The first line of
example says the all PCI devices with address started with “0000:” (i.e. Domain
address equal to “0000”) will be binded to NUMA node 1. The second line
instructs birq to bind PCI device with address “0000:08:00.0” to the NUMA
node 0. The third line instructs to bind PCI device “0000:00:1¢.6” to CPUs with
numbers 0, 1, 2, 3, 4, 5, 6, 7. The “ff” is a CPU mask to bind to. It allows to
bind PCI devices in more specific way than the NUMA node definition.

If PCI device address matches the several lines within config file then the more
specific (longer) line will be used. The PCI device “0000:08:00.0” matches the
first and second lines. The second line will be used because the “0000:08:00.0” is
more specific than “0000:”.

Note you don’t need proximity config file if your platform shows right values for
PCI device proximity.

	Overview
	BIRQ related links
	Useless statistics
	IRQ sticking
	Initial IRQ allocation
	Another problems and peculiarities
	Hyper Threading
	Some BIRQ features
	Usage
	Configuration file
	Proximity

